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Transmission and reflection studies of periodic and random systems with gain
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~Received 20 July 1998!

The transmission~T! and reflection~R! coefficients are studied in periodic systems and random systems with
gain. For both the periodic electronic tight-binding model and the periodic classical many-layered model, we
obtain numerically and theoretically the dependence ofT and R. The critical length of periodic systemLc

0 ,
above whichT decreases with the size of the systemL while R approaches a constant value, is obtained to be
inversely proportional to the imaginary part«9 of the dielectric function«. For the random system,T andR
also show a nonmonotonic behavior versusL. For short systems (L,Lc) with gain ^ ln T&5( l g

212j0
21)L. For

large systems (L@Lc) with gain ^ ln T&52(lg
211j0

21)L. Lc , lg , and j0 are the critical, gain, and localization
lengths, respectively. The dependence of the critical lengthLc on «9 and disorder strengthW are also given.
Finally, the probability distribution of the reflectionR for random systems with gain is also examined. Some
very interesting behaviors are observed.@S0163-1829~99!02809-X#
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I. INTRODUCTION

While the study of localization of classical and quantu
waves in random disordered media has been w
understood,1–4 recently, the wave propagation in amplifyin
random media has been pursued intensively.5–13 Some inter-
esting results have been predicted, such as, the localiza
length of a random medium with gain,8 the sharpness of bac
scattering coherent peak,5,10,14the dual symmetry of absorp
tion and amplification,9 the critical size of the system,6,8 and
the probability distribution of reflection.7 Numerically, two
kinds of models are studied: one is the electronic tight bi
ing model,12,13 the other is the many-layered model of cla
sical waves.8 Theoretically, a lot of methods are used to g
these results, such as the diffusion theory6,11 and the trans-
mission matrix method.7 Most of these studies are for homo
geneously random systems which are generated by intro
ing the disorder into the continuous system, and the med
parameter, such as the dielectric constant, is assumed to
in a continuous way.5,8 But the periodically correlated ran
dom systems which are generated by introducing the di
der into a periodic system, such as a photonic-band-struc
have not been studied adequately.

With gain, will such random systems with periodic bac
ground behave similar as the homogeneously random
tem? Both experimentally and theoretically, the study
such system is very important in understanding the propa
tion of light in random media. These type of photonic-ban
structure systems are widely used in experiments.3,15 Theo-
retically, just as John2 argued, the localization of a photon
from a subtle interplay between order and disorder. For
periodically correlated random systems with gain, the p
odic background plays the order role, and now its interp
with not only disorder but also with gain should be a ve
interesting new topic.

In this paper we address both the electronic tight bind
model and the many-layered model of classical waves.
first compare the numerical results of periodic amplifyi
system with what we can predict theoretically by the trans
matrix method. It is surprising to get most of the univers
PRB 590163-1829/99/59~9!/6159~8!/$15.00
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properties, such as critical length and exponential decay
transmission, of homogeneously random system8 from a pe-
riodic system too.

With the help of some theoretical arguments and num
cal results, we suggest that the lengthj15u1/Im(K)u, where
K is the Bloch vector in a periodic system with gain,
replace the gain lengthl g5u1/Im(k)u introduced in Ref. 8.
This is more reasonable since the correlated scatterers
periodic system can make the paths of wave propaga
much longer in the system. We also think that it is actua
the Bloch wave instead of the plane wave which propaga
in the system. Then we introduce disorder into these perio
systems and calculate their properties. Our numerical si
lations for both models show that periodically correlated ra
dom systems give similar behaviors as that of the homo
neously random systems studied previously. But in so
cases, we get interesting results for the localization lengthj,
the critical lengthLc and the probability distributionP(R) of
reflection. All these results are related to the periodic ba
ground of such systems. We also examine the results of
transmission coefficientT for short (L,Lc) systems. Our
numerical results show that the formula of the transmiss
coefficient of media withabsorptioncan be generalized to
the transmission coefficient of short systems withgain, if we
replace the gain lengthl g ~or j1) with the negative of the
absorption length2 l a in the formula. To explain our result
of the critical lengthLc , we compare the two basic theorie
for obtaining the critical length, the Letokhov theory6 and the
Lamb theory,16 and we get some theoretical results of critic
length which are in good agreement with our numerical
sults. The behavior of the distribution of the probability
reflectionP(R) is much more complex than the theoretic
prediction of homogeneously random system.7 We find that
the periodic background influences strongly the general
havior of P(R).

The paper is organized as follows. In Sec. II we introdu
the two theoretical models we are studying. The results
the periodic systems with gain are presented in Sec.
while in Sec. IV the results for the random systems with g
are given. Also in Sec. IV we present our theoretical a
6159 ©1999 The American Physical Society
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6160 PRB 59XUNYA JIANG AND C. M. SOUKOULIS
numerical results for the critical lengthLc . In Sec. V the
results for the probability distribution of reflection coefficie
R for both models are presented. Finally, Sec. VI is devo
to a discussion of our results and give some conclusions

II. THEORETICAL MODELS

A. Many-layered model of classical wave

Our periodic many-layered model of classical wave co
sists of two types of layers with dielectric constant«15«0
2 i«9 and «25x«02 i«9 and thicknessesa595 nm and
b05120 nm, respectively, where the negative part of diel
tric constant, i.e.,«9.0, denotes the homogeneous ampl
cation of the field. We have tried a lot values forx, such as
1.5, 2, 3, 5, 6, and get no essential difference in our res
for different values. In this paper we choosex52, i.e.,
Re(«1)5«051 and Re(«2)52«052. The system hasL
cells. Each cell is composed by two layers with dielect
constant«1 and«2 respectively. Without gain, we obtain tha
the wavelength range of the second band of this perio
system is from 247 nm to 482.6 nm~the first band has a
range from 592 nm to infinite!. So we choose the waveleng
360 nm to represent band center, the wavelength 420 nm
a general case, and the wavelength 470 nm to represen
band edge.

To introduce disorder, we choose the width of seco
layer of the nth cell to be random variablebn5b0(1
th

o

em

io
d
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-
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1Wg), whereW describes the strength of randomness ang
is a random number between (20.5,0.5). The whole system
is embedded in a homogeneous infinite material with diel
tric constant equal to«0 .

For the 1D case, the time-independent Maxwell equat
can be written as

]2E~z!

]z2
1

v2

c2 «~z!E~z!50. ~1!

Suppose that in the medium with dielectric constant«1
and the medium with dielectric constant«2 , the electric
field8 is given by the following expressions:

E1n~z!5Aneik~z2zn!1Bne2 ik~z2zn!,

E2n~z!5Cneik~z2zn!1Dne2 ik~z2zn!. ~2!

Using the appropriate boundary condition~continuity of
the electric fieldE and of the derivative ofE at the interface!,
we obtain that

S An21

Bn21
D 5~Mn!S An

Bn
D , ~3!

where
~Mn!5S e2 ikaFcos~qbn!2
i

2S k

q
1

q

kD sin~qbn!G 2
i

2
e2 ikaS k

q
2

q

kD sin~qbn!

i

2
eikaS k

q
2

q

kD sin~qbn! eikaFcos~qbn!1
i

2S k

q
1

q

kD sin~qbn!G D , ~4!
-
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wherek5(v/c)A«1 andq5(v/c)A«2.
From the product of these matrices,M (L)5)1

LMn , we
can obtain the transmission and reflection amplitudes of
sample,t(L)51/M11 and r (L)5M21/M11. For each set of
parameters (L,W,«9), the reflection coefficientR5ur u2 and
the transmission coefficientT5utu2 are obtained from a large
number of random configurations. We have used 10 000 c
figurations to calculate the different average values ofR and
T, and 1 000 000 configurations to obtainP(R). Our numeri-
cal results show that the localization length for a syst
without gain behavesj0}1/W2 for this model, and are in
agreement with previous workers.

B. Electronic tight-binding model

For the electronic tight-binding model, the wave equat
can be written as

S fn11

fn
D 5~Mn!S fn

fn21
D , ~5!

where
e

n-

n

~Mn!5S E2en 21

1 0 D . ~6!

en5Wg2 ih, where W describes the strength of random
ness,g is a random number between (20.5,0.5),h.0 cor-
responds to amplification andfn is the wave function at site
n. The lengthL of the system is the total lattice number
the system. The system is embedded in two identical se
infinite perfect leads on either side. For the left and the ri
sides, we havef0511r (L) and fL115t(L)eik(L11). We
can obtain reflection amplituder (L) and transmission ampli
tude t(L) by the products of matrices,M (L)5)1

LMn .

t~L !5
22i sin~k!

M11e
2 ik1M122M22e

ik2M21

e2 ik~L11!,

r ~L !5
M21e

ik1M222M112M12e
2 ik

M11e
2 ik1M122M212M22e

ik
e2 ik, ~7!

wherek5arccos(E/2).
WhenW50 and without gain, the model is a periodic on

with only one band spanning in energy between22 and 2.
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Notice that the hopping matrix elements in Eq.~6! are equal
to one, which is our unit of energy. So we chooseE50 to
represent band center,E51 as a general case,E51.8 to
represent band edge.

Similar as the many-layered model, for each set of para
eters (L,W,h), 10 000 random configurations were used
obtain a average value ofR andT, and one million random
configurations forP(R). Theoretical and numerical resul
give that the localization length for a system without ga
behavesj0}1/W2, in agreement with previous workers.

III. PERIODIC SYSTEMS

Almost all the properties of the periodic systems of bo
the many-layered model and the tight-binding model can
predicted theoretically.

A. Classical many-layered model

For long systems (L@Lc
0) of the many-layered model w

have that

lim
L→`

] ln T

]L
52j1

2152 Im~K !}«9, ~8!

where K is the Bloch vector which is a complex numb
now, and satisfies cosK5cos(ka)cos(qb0)2 1

2 (k/q
1q/k)sin(ka)sin(qb0). Because Im(K),0, the transmis-
sion coefficientT is decaying exponentially for a long sys
tem.

For a short system,L,Lc
0 , we have

] ln T

]L
51/j18.2uCuuIm~K !u.2uIm~K !u, ~9!

where C52@sin(ka)cos(qb0)1cos(ka)sin(qb0)#/
@2 sin(K)#, and uCu is larger than but very close to 1 whe
wavelength is at the band center, and become bigger w
wavelength approached the band edge.

So the slope of lnT vs L for a short periodic system i
almost same as the negative value of the slope for the
system. The slopes of lnT at both sides of the maximum ar
approximately symmetric. In Fig. 1~a!, we can see that, whe
L,Lc

0 , T increases vsL with the slope 1/j18 , and get to a
maximum atLc

0 and decays exponentially whenL.Lc
0 with

the slope 1/j1 .
From the behavior of the theoretical expressions ofT or

R, whenT or R goes to infinite, we can obtain analytical
that Lc

0 is given as

Lc
0.j1lnS uCu11

uCu21D , ~10!

whereC is same as defined above in Eq.~9!, anduCu is close
to one. From the property ofuCu discussed above, we can s
that Lc

0@j1 at the band center , and becomes smaller w
wavelength approaches the band edge. The value ofuCu is
almost independent of gain, soLc

0 is parallel to 1/«9 or j1 .
We have shown thatLc

0«9 is almost a constant for a give
wavelength, and our numerical results agree very well w
the theoretical prediction.
-

e

en

g

n

h

The reflection coefficient gets to a maximum value atLc
0

too, and fluctuates a lot with the sizeL of the system. When
L approaches infinity,R reaches a saturated value. The sa
rated value ofR is given by

lim
L→`

R5R0.
u~k/q2q/k!sin~qb!u2

usin~K !~ uCu21!u2
. ~11!

So R0 is almost independent of gain orj1 . Figure 2 shows
that indeedR increase whenL,Lc

0 , gets to its maximum

FIG. 1. The logarithm of the transmission coefficientT versus
(L2Lc

0)/j1 , whereLc
0 is the critical length andj1 is the gain length

of periodic systems.~a! For the periodic many-layered model,~i!,
~ii !, and ~iii ! are the values at three representable wavelengthl
5360 nm ~band center!, 420 nm ~general!, and 470 nm~band
edge!, respectively. The different symbols represent values obtai
from different gains,«9520.001,20.002,20.005,20.001, and
20.1. ~b! For the periodic tight-binding model withE50 for dif-
ferent gainsh50.01, 0.05, 0.1, 0.2, and 0.5.

FIG. 2. The logarithm of the reflection coefficientR versus L for
the periodic many-layered model.~a!, ~b!, and ~c! are values of
three representative wavelengthsl5360 nm, 420 nm, and 470 nm
respectively. From right to left, the numbers on the peaks are
values of Lc

0 , corresponding to different gains«9520.001,
20.002,20.005,20.01, and20.1. Notice that the saturated valu
of R is independent of«9 for the three wavelengths studied.
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value and fluctuate violently atLc
0 , then approaches a satu

rated value which is almost independent of gain.

B. Electronic tight-binding model

For the electronic tight-binding model, whenE50, the
ln T for the long system can be obtained by the use of
~7!:

FIG. 3. The logarithm of the reflection coefficientR versusL for
the periodic tight-binding model;~a!, ~b!, and~c! are values of three
representative energies:E50, 1, and 1.8. From right to left, the
numbers on the peaks are the values ofLc

0 corresponding to differ-
ent gainsh50.01, 0.05, 0.1, 0.2, and 0.5. Notice that the satura
value ofR for eachE depends onh.

FIG. 4. The average values of the logarithm ofT versusL/j.
The results of the random many-layered model, withl5360 nm
andW50.2, are shown by solid lines. Lines from lower to high
correspond to different gains«950.0005, 0.001, 0.005, and 0.01
When «9 is equal to 0.001, 1/j1 is almost the same as 1/j0 , so
^ ln T& is almost horizontal for smallL, as shown by the wide solid
line. For «9.0.001, 1/j1.1/j0 , and for «9,0.001, 1/j1,1/j0 .
Results for the random tight-binding model, withE50 andW51,
are shown by dashed lines. Lines from lower to higher corresp
to h50.01, 0.02, 0.08, and 0.3. Whenh is equal to 0.02, 1/j1 is
almost the same as 1/j0 , so ^ ln T& is almost horizontal for smallL,
as shown by the wide dashed line. Forh.0.02, 1/j1.1/j0 , and for
h,0.02, 1/j1,1/j0 .
.

lim
L→`

] ln T

]L
521/j1.2h. ~12!

Similarly as the classical many-layered model, for sh
system of tight-binding model we have

] ln T

]L
51/j18.h. ~13!

So the slope symmetry of lnT at both sides ofLc
0 still exists.

In Fig. 1~b!, we can see a similar behavior as in Fig. 1~a!,
whenL,Lc

0 ,ln T change vsL with the slope of 1/j18 and gets
maximum atLc

0 , then it begin to decay exponentially with
slope of 1/j1 .

Assuming that the theoretical expression ofT, given by
Eq. ~7!, is infinite, we can obtain thatLc

0 is given by

Lc
0.

2

h
~ ln 42 ln h!.2j1ln~4j1!. ~14!

We also shown thatLc
0h12 lnh vs h, for E50, is a con-

stant for different gain and indeed find out that the theor
cal prediction given by Eq.~14! agree very well with the
numerical results.

The reflection coefficientR approaches a saturated valu
as L goes to infinite, but the saturated value ofR0 is not a
constant independent of the gain as in the case of clas
many-layered model. This is clearly seen in Fig. 3 where
plot lnR vs L. Notice that the lnR curves increase vsL when
L,Lc

0 , get to a maximum atLc
0 , and then approach a satu

rated value whenL goes to infinity. Similar results were
obtained forEÞ0.

IV. RANDOM SYSTEMS

In Fig. 4, we give the general behavior of average va
^ ln T& vs L for both models. We can see the different beha
iors for L,Lc and L.Lc . When 1/j1.1/j0 and L
,Lc , ^ ln T& increase vsL from origin with a slope which is
defined as 1/j8 and whenL.Lc , ^ ln T& decrease vsL with a
slope 21/j. But when 1/j1,1/j0 , ^ ln T& will decrease
monotonically, at first with the slope 1/j8521/uj8u, at Lc ,
there are a turning point and slope changes to21/j. We will
study the values ofj8, j andLc in this section.

It was first suggested by Zhang8 that the localization
length j of a long random system with gain will becom
smaller than the localization lengthj0 of the random system
without gain. In particular he suggested that

1

j
5 lim

L→`

] ln T

]L
5

1

j0
1

1

j1
, ~15!

where j0 is the localization length of the system witho
gain, l g is replaced byj1 in the original formula of Zhang
because of the periodic background of our systems.

d
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We have numerically calculated 1/j for different cases of
disorder, gain and frequency~energy!, and compare it with
1/j011/j1 , as shown in Figs. 5~a! and 5~b! for the many-
layers model and the tight-binding model respectively. F
most of the cases, Eq.~15! is a very good formula. Only
when wavelength is on band edgeand when both gain and
randomness are very strong, we can see that the nume
results deviate from the theoretical prediction, which is
solid line in both Figs. 5~a! and 5~b!.

For a short system (L,Lc), the behavior of̂ ln T& vs L is
quite different from that of a long system as shown in Fig.
Freilikher et al. and Rammal and Doucot17 obtained that the
transmission coefficient of a random system withabsorption
is given by

^ ln T&5S 2
1

l a
2

1

j0
DL, ~16!

where l a is the absorption length andj0 is the localization
length. For a medium withgain, can we just substitute the
2 l a

21 with l g
21 in Eq. ~16! to get the following equation?

^ ln T&
L

5
1

j8
5S 1

l g
2

1

j0
D . ~17!

Because of the periodic background of our models, we
j1 to replacel g in our calculations.

So far there is no independent verification for this conc
sion. After substitutingj1 for l g , our numerical results show
that Eq.~17! is correct forshort systems withgain for both

FIG. 5. 1/j versus 1/j011/j1 , wherej is the localization length
for a system with gain,j0 is the localization length of a system wit
disorder but with zero gain, andj1 is the gain length.~a! For the
random many-layered model, empty symbols are of wavelengtl
5360 nm and filled symbols are of wavelengthl5470 nm. Dif-
ferent symbols represent different sets of parameters of disorde
gain:W50.05, 0.1, 0.2, and 0.5;«950.001, 0.002, 0.005, 0.01, 0.05
and 0.1.~b! For the random tight-binding model, empty symbols a
of energyE50, and filled symbols are of energyE51.8. Different
symbols represent different sets of parameters of disorder and
W50.5, 0.8, 1, 1.5, 2, 3, and 5;h50.01, 0.05, 0.1, and 0.3.
r

cal
e
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e
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models. When the strength of the disorder is a constant
j0 is a constant, according to Eq.~17!, 1/j121/j8 should be
equal to 1/j0 and be constant as the gain varies. We ha
checked this prediction and find indeed that the numer
values are almost the same as the ones predicted theo
cally.

From Eq. ~17!, we can predict the basic features of th
length dependence of̂ln T& shown in Fig. 4. When 1/j1
.1/j0 ,^ ln T& will increase withL, and will reach a maxi-
mum value whenL gets toLc . But if 1/j1,1/j0 , the ^ ln T&
will decrease monotonically, at first with a slope of2u1/j1
21/j0u from the origin, atLc the curve has a turning poin
and the slope changes to2u1/j111/j0u. If 1/j1.1/j0 , the
curve is almost horizontal for small L and begins to decre
with a slope21/j at the critical length. This behavior i
exactly shown in Fig. 4.

The critical lengthLc is one of the most important param
eters of a random system with gain. For a random syst
one of the most important theories is the Letokhov theor6

Zhang8 generalized the theory and used the no-gain local
tion length j0 to replace the diffusion coefficientD in the
Letokhov theory and obtain that the critical lengthLc

.Aj0l g, so that we can clearly see localization effects in t
system. But as shown above, there is a finite critical length
periodic system when the no-gain localization lengthj0 goes
to infinite, so there must be other mechanisms for determ
ing the critical length in those systems. We find that wh
the localization effect is strong enough so that the no-g
localization lengthj0!(Lc

0)2/j1 , then the results of the
Letokhov theory are quite good. But when the system r
domness is weak so thatj0 is larger than (Lc

0)2/j1 , then the
Letokhov theory results are not correct, and we have to
other theories, such as the Lamb theory,16 which is well
known is laser physics, to determineLc . Next we will com-
pare the Letokhov theory with the Lamb theory, and find t
expressions of the critical length in different cases.

According to the Letokhov theory6,11 the field in the sys-
tem satisfies

]f~rW,t !

]t
5D¹2f~rW,t !1

cf~rW,t !

l g
, ~18!

whereD is the diffusion coefficient andc is the speed of the
wave.

Considering the relaxation after long time, the solution11

of Eq. ~18! is

f~rW,t !}e2t[D~p/L !22c/ l g] ,

]f~rW,t !

]t
52DS p

L D 2

f~rW,t !1
cf~rW,t !

l g
. ~19!

WhenL5Lc5pADl g /c, the system is at a critical point. I
L,Lc the field will decay vs time, but ifL.Lc then the field
in the system will become stronger and stronger with tim

We can clearly see that the physical meaning ofLc is the
balance point of the gain and loss in the system. When thL
is less thanLc , the photon escaping rate, which is dete
mined byDp2/L2, is larger than the photon generating ra
which is determined byc/ l g of the system, so the photon
generated by the stimulated emission can escape from

nd

in:
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system instantaneously and the system can get to the s
state after a long time. IfL is larger thanLc , gain is larger
than loss, and photons will be accumulated in the system11

Based on the Letokhov theory and the weak localizat
theory1,2 results, Zhang8 generalized theLc to be Lc

.Aj0l g since D5 1
3 lc, where l is the mean free path an

j05(2;4)l .
In our models, considering the periodic background,

substitutej1 for l g first. But when the disorder become
weaker and weaker, the system become almost periodicj0

goes to infinite,Lc goes toLc
0 instead to infinite. How one

can explain this behavior ofLc? The Lamb theory can give
theoretical explanation of it. In the Lamb theory, a pheno
enological parameter Q~L!, the quality factor which gener
ally is a function of system lengthL, is introduced to show
the energy loss rate of the system~also can be thought as th
photons loss rate of the system!. In the Lamb theory, the
magnitude of the electric field in a linear medium satisfi
the following equation:

]uE~ t !u
]t

52
v

2Q~L !
uE~ t !u1

c

l g
uE~ t !u. ~20!

At the critical condition, the gain term and loss term a
equal. We have

v

2Q~Lc!
5

c

l g
. ~21!

If we compare Eq.~20! with the solution of Letokhov
theory, Eq.~19!, we can find the similarity between them
This similarity is from the same physical principle, the inte
play of loss and gain in the system. From Eq.~20! we can see
that the gain term is same as the one given by the Letok
theory, the only difference is from loss term. General
v/2Q is a function of the system length, e.g., for Fabry-Pe´rot
interferometer v/2Q}1/L.16,18 For periodic systemQ
5Qp , we havev/2Qp}1/L too. From the balance of gai
and loss, we can getLc

0}j1 in agreement with our result
presented in Sec. III. This means that in a periodic sys
the rate of loss is not infinite, although the no-gain localiz
tion length goes to infinity. The rate is determined by theQp

of the system and we can get a finiteLc
0 correspondingly.

From theLc
0 obtained above and the critical condition give

by Eq. ~21!, we have that the quality factor of the period
system is given by

Qp5
vj1

2cLc
0

L, ~22!

which is independent of no-gain localization lengthj0 .
For a random system, things are a little more difficult. T

theory of Letokhov does not give the detailed information
localized modes but it gives a localization related quantityD,
the diffusion coefficient. According to the localizatio
theory,D is directly related with localization lengthj0 , just
as Zhang discussed.8 Based on the correct results of th
Letokhov theory in the strong localization case, we can

sume that when the disorder is strong enoughj0!Lc
02

/j1 ,
the localization effects will dominate the escape rate of p
tons of the system~Our numerical results shown in Fig.
tic
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e

-

s

v
,

m
-

f

s-

-

support this assumption!. Lamb theory gives that the Q of
strong random system is determined by the localization
fect. By comparing the corresponding terms in Eq.~19! and
Eq. ~20!, we obtain that

Q.Ql5
vL2

p2D
5

avL2

cj0
, ~23!

where the subscriptl is for localized modes,a is a constant
of the order of unity and depends on the ratio ofD and j0
according to the localization theory. For both of the mod
studied here, we find thea can be chosen to be equal to 0.
From this we can get that the critical lengthLc5A1/aj0j1

.Aj0j1 which is consistent with the Letokhov theory. Equ
tion ~23! is a very interesting result for laser physics becau
it is obtained by the comparison of the Letokhov and Lam
theories, and it directly gives the relationship of the qual
factor Q of a random system with the no-gain localizatio
lengthj0 of the system.

In the weak disorder limitj0@Lc
02

/j1 , Q→Qp and Lc

→Lc
0. In strong disorder limitj0!Lc

02
/j1 , Q→Ql and Lc

→Aj0j1. For cases wherej0 is comparable toLc
02

/j1 , both
the effects of periodic background and randomness will
important to determine the quality factor of such a syste
Considering theQ as the photon-resistance in the syste
and if we assume that both effects areindependentwith each
other, we have that the total quality factor of the system to

Q5Qp1Ql5
v

c S j1L

Lc
0

1
aL2

j0
D . ~24!

From the critical condition, Eq.~21!, we have that

Lc52
j0j1

2aLc
0

1AS j0j1

2aLc
0D 2

1
j0j1

a
. ~25!

In Figs. 6~a! and 6~b!, we compare the theoretical predic
tions given by Eq.~25! and by Zhang8 with our numerically
calculated results for the classical many-layered model
the electronic tight-binding model, respectively. Our nume
cal results shown in Figs. 6~a! and 6~b! strongly support Eq.
~25! to be the correct expression of the critical lengthLc for
both the weak and the strong random limits. In some ot
cases, the deviation can be as large as fifteen percent w
is still very good considering the many approximations th
have been introduced in derivation of Eq.~25!. One expla-
nation for this deviation is that the two effects that we
added in Eq.~24! are not totallyindependent,because the
correlated scattering of the periodic background will affe
both Qp andQl .

V. PROBABILITY DISTRIBUTION OF REFLECTION
COEFFICIENT

Pradhan and Kumar7 first obtained the probability distri-
bution of the reflection coefficient for a long system wi
randomness and gain, which is given by

P~x!5PS R21

2q D5S 2q

R21D 2

expS 22q

R21D , ~26!
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wherex5(R21)/2q andq5j0 /j1 . We numerically calcu-
lated theP(x) „or P(R)… for both models in cases thatq
changes drastically. Our numerical features ofP(x)„P(R)…
give some interesting results. According to Eq.~26!, the
maximum probability ofP(x) „or P(R)… should appear a
0.5 ~or R5q11), and the distribution has a long tail of larg
x ~or R).

For the many-layered model, when the wavelength is n
the band center (l5360 nm), we have thatLc

0/j1.7 for
different gains from Eq.~10!. Whenq at the range of 0.01 to

50, and soj0,Lc
02

/j1, theP(x)@P(R)# behaves as predicte
by Eq.~26!. Whenq is at the range of 50 to 500, the positio
of the maximumP(x)„P(R)… begins to shift left away from
the point 0.5~or q11). Whenq increase further, such as t
become close to a thousand, the maximum ofP(R) shift to
the value ofR0 , which is the saturated value of reflection f
the periodic system, andP(R) begin to change its shape int
a delta function and the long tail disappears. This proces
clearly shown in Fig. 7. It is reasonable to assume that w
q is very large, the system is similar to a periodic system,
the P(R) changes to a delta function which is the distrib
tion of the reflection coefficient of the periodic system.

For the tight-binding model, when frequency is at ba
center (E50),Lc

0/j1 is not a constant ash changes. It has a
range from 5 to 7. Whenq is at the range of 0.01 to 20

(j0,Lc
02

/j1), the P(x) „or P(R)… behaves as predicted b
Eq. ~26!. Whenq is at the range of 20–400, then the positi
of the maximumP(x)„P(R)… begins to shift left away from
theoretical value 0.5~or q11). Whenq is larger than 400,
P(R) develops two peaks, one peak evolves from the or
nal peak, the other one emerges atR0 . When q is even
larger, such as thousands, then the original peak goes d

FIG. 6. The critical lengthLc is plotted versus different random
strengthsW. ~a! For the random many-layered model withl
5360 nm, the dashed line and darkened line are the values
tained according to Zhang’s formula and Eq.~25!, respectively.~b!
For the random tight-binding model withE50 andh50.01, the
dashed line and darkened line are the values obtained accordi
Zhang’s formula and Eq.~25!, respectively. In both casesz
5j0j1 /2aLc

0 anda50.7.
ar

is
n
o

i-

wn

and disappears, and the new peak become higher atR0 . At
the same time the long tail disappears, theP(R) also changes
to a delta function at the position ofR0 . All these changes
are shown clearly in Fig. 8. In Ref. 13, they also got tw
peaks forP(R), but they did not explain that the new peak
due to the periodic background of the system and that
delta function is at the position ofR0 , the saturated value o
periodic system. When q is very small, we obtain that
P(x) „or P(R)… is almost the same as the one predicted
Eq. ~26!, quite different from the results of Ref. 13. We thin
that this difference is due to the fact that they have not ren
malized their numerical results.

In summary, from our numerical results, we get the ge
eral behavior ofP(x) „or P(R)… for both models. Whenj0

,Lc
02

/j1 , the P(x) „or P(R)… is same as the theoreticall

predicted one by Eq.~26!. Whenj0 is bigger thanLc
02

/j1 ,
we must think about the effect of the periodic backgrou
and if j0 is really very large, the periodic background w
dominate the behavior ofP(R). We also find that at the ban
edge wavelength for many-layered model (l5470 nm) or
at the band edge energy for the tight-binding model~E51.8!
the effects of coherent scattering will be very strong a
make the long paths of wave propagation more important
we think it is this coherent scattering effect which makes
results ofP(x) „or P(R)… always different from the predic

b-

to
FIG. 7. Probability distribution of the reflection coefficientP(x)

versus x of the random many-layered system with gain atl
5300 nm forq51.1 and 17.7~a!; q50.163~b!; q5451~c!, where
x5(R21)/q andq5j0 /j1 . The solid curve given by the solid line
in ~a!, ~b!, and~c! is the analytical result of Eq.~26!. In ~d!, P(R)
versusR is plotted for two values ofq: q51800 ~low one! and
7200~high one!. Notice thatP(R) approaches a delta-function dis
tribution atR0 whenq57200.
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tions given by Eq.~26! which is obtained for homogeneou
random systems.

VI. CONCLUSION

In conclusion, we have studied the transmission and
flection coefficients in periodic or periodically correlate

FIG. 8. Probability distribution of the reflection coefficientP(x)
versusx of the random tight-binding system with gain atE50 for
q51.0 ~a!; q5132 ~b!; q5525 ~c!, where x5(R21)/q and q
5j0 /j1 . The solid curve given by the solid line in~a!, ~b!, and~c!
is the analytical result of Eq.~26!. In ~d!, P(R) versusR is plotted
for q55.253104.P(R) approaches a delta-function distribution
R0 whenq55.253104.
.

en
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ev
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kk
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random systems with homogeneous gain. Theoretically,
periodic systems we predicted the behaviors of transmis
and reflection coefficients, such as the slopes of long syst
and of short systems and critical length by the transmiss
matrix method. For random systems, first the Zhang’s f
mula of the localization length for long systems is check
We find that only at the band edge and with very strong g
and strong disorder, there is obvious deviation from the t
oretical prediction of the localization length with gain. F
short systems, our numerical results show that our gene
zation of the formula of absorbing system is correct for a
plifying systems. According to this generalization we c
predict the behaviors of average values of logarithm of tra
mission coefficient̂ ln T& from the value of 1/j8, such as if it
is positive then thê ln T& will increase from origin at slope
1/j8 and generate a peak atLc and then start to decrease
slope 21/j; if it is negative then thê ln T& will decrease
monotonically and has a turning point atLc with the slope
change from21/uj8u to 21/j.

To explain the behavior of the critical lengthLc which we
got from our numerical results, we compare the Letokh
theory with the Lamb theory and give a general express
for the critical length considering both the effects of loca
ization and periodic background. With this comparison,
also construct the relation of the quality factorQ of a random
system with the localization lengthj.

We also study the probability distribution of the reflectio
coefficientP(R) of random systems with gain. We find som
new behaviors ofP(R) and give the criteria for the range o
validity of the different behaviors and explain it by the in
fluence of the periodic background too. The study of wa
propagation in an amplifying random system is a challeng
topic. There are still a lot of things to be done.18
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